Gradients of Convex Functions
نویسنده
چکیده
منابع مشابه
Hermite-Hadamard inequalities for $mathbb{B}$-convex and $mathbb{B}^{-1}$-convex functions
Hermite-Hadamard inequality is one of the fundamental applications of convex functions in Theory of Inequality. In this paper, Hermite-Hadamard inequalities for $mathbb{B}$-convex and $mathbb{B}^{-1}$-convex functions are proven.
متن کاملBernstein's polynomials for convex functions and related results
In this paper we establish several polynomials similar to Bernstein's polynomials and several refinements of Hermite-Hadamard inequality for convex functions.
متن کاملSome Properties of Certain Subclasses of Close-to-Convex and Quasi-convex Functions with Respect to 2k-Symmetric Conjugate Points
متن کامل
(m1,m2)-AG-Convex Functions and Some New Inequalities
In this manuscript, we introduce concepts of (m1,m2)-logarithmically convex (AG-convex) functions and establish some Hermite-Hadamard type inequalities of these classes of functions.
متن کاملOn Fejér Type Inequalities for (η1,η2)-Convex Functions
In this paper we find a characterization type result for (η1,η2)-convex functions. The Fejér integral inequality related to (η1,η2)-convex functions is obtained as a generalization of Fejér inequality related to the preinvex and η-convex functions. Also some Fejér trapezoid and midpoint type inequalities are given in the case that the absolute value of the derivative of considered function is (...
متن کاملOn generalized gradients and optimization
There exists a calculus for general nondifferentiable functions that englobes a large part of the familiar subdifferential calculus for convex nondifferentiable functions [1]. This development started with F.H. Clarke, who introduced a generalized gradient for functions that are locally Lipschitz, but (possibly) nondifferentiable. Generalized gradients turn out to be the subdifferentials, in th...
متن کامل